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Abstract Major effect genes are often used for germ-
plasm identification, for diversity analyses and as selection
targets in breeding. To date, only a few morphological
characters have been mapped as major effect genes across a
range of genetic linkage maps based on different types of
molecular markers in sorghum (Sorghum bicolor (L.)
Moench). This study aims to integrate all available previ-
ously mapped major effect genes onto a complete genome
map, linked to the whole genome sequence, allowing sor-
ghum breeders and researchers to link this information to
QTL studies and to be aware of the consequences of
selection for major genes. This provides new opportunities
for breeders to take advantage of readily scorable mor-
phological traits and to develop more effective breeding
strategies. We also provide examples of the impact of
selection for major effect genes on quantitative traits in
sorghum. The concepts described in this paper have par-
ticular application to breeding programmes in developing
countries where molecular markers are expensive or
impossible to access.
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Introduction

Major effect genes are often used for germplasm identifi-
cation by sorghum breeders and for diversity analysis in
germplasm collections, e.g. Upadhyaya et al. (2009);
Grenier et al. (2004); Abdi et al. (2002). Major effect genes
can also be important as targets for selection in their own
right. To date, approximately 35 major effect genes have
been mapped in sorghum (Sorghum bicolor (L.) Moench)
as simply-inherited markers across a range of genetic
linkage maps based on different types of molecular
markers. This represents less than 20% of the more than
200 named morphological loci (Doggett 1970). Until
recently, the integration of this information has been
complicated by the lack of common markers across pop-
ulations; for example Bennetzen et al. (2001) attempted to
place a selection of major effect genes onto a framework
map for sorghum, but due to the lack of common markers
across the populations available at that time, they were able
to map only nine genes and even then with only approxi-
mate locations. In the last 5 years, there has been a massive
expansion in the range of markers, genetic maps, consensus
maps and other genomic resources developed for sorghum,
culminating in the recent sequencing of the genome
(Paterson et al. 2009). These resources now permit the
effective integration of major effect genes.

The pedigree breeding method and various modifications
of this method (Newman 1912) are the dominant breeding
methods used by sorghum breeders (House 1985; Rooney
and Smith 2000; Jordan et al. 2004) and breeders of most
crops that tolerate inbreeding. This breeding method typi-
cally involves the development of inbred lines which are
either tested in hybrid combination or as inbred varieties.
Inbred parents that carry genes that the breeder wants to
combine are intercrossed. Selection for simply-inherited
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traits is often applied to early generations, with selection for
quantitative traits being practised in later generations in
replicated trials. During these early generations, segregating
major effect genes may either be under positive selection or
present as neutral markers until fixed. In recent years, mar-
ker aided selection (MAS) has begun to be used on a large
scale in breeding programmes in some crops (e.g. Gupta
et al. 2009; Ottoman et al. 2009; William et al. 2007). MAS
is often used in conjunction with elements of conventional
pedigree breeding. In most sorghum breeding programmes,
the implementation of MAS is limited (e.g. Hash et al. 2003;
Rooney and Klein 2000) and pedigree breeding based on
phenotype remains the most widely used breeding method.
While MAS will undoubtedly become important in sorghum
breeding programmes, it is likely that some component of
early generation, phenotypic selection will continue for the
foreseeable future.

The first association of a simply-inherited major effect
gene with a quantitative trait in plants was observed more
than 80 years ago (Sax 1923) and the phenomenon has
since been observed for a range of traits in a range of
crops, e.g. the linkage between the quantitative trait
flowering time and the simply-inherited flower colour trait
in pea (Rasmusson 1935). Strong selection for simple
traits with high heritability in early generations can rapidly
drive fixation of these genes and the associated genomic
regions. In the absence of knowledge about the location
and linkage relationships of the major effect gene, linkage
drag may have unintended favourable or unfavourable
consequences. For example, if these regions contain
favourable QTL alleles linked in repulsion to the major
effect genes, then strong selection for the major effect
genes can dramatically reduce the frequency of favourable
QTL alleles in the population and reduce the potential for
genetic progress for the quantitative traits. Alternatively if
the major effect genes are linked in coupling phase with
favourable QTL alleles, then selection for the simple trait
will potentially increase genetic gain. A number of studies
have estimated the extent of linkage drag, which is
dependent on the number of chromosomes and number of
cross-over events per bilvalent, i.e. on the number of
independently inherited chromosome segments (Hillel
et al. 1990). Stam and Zeven (1981) calculated the theo-
retical length of the donor chromosome segment on a
100-cM chromosome after six backcross generations
without background selection to be 32 cM. Young and
Tanksley (1989) confirmed these results and reported
donor segmental lengths of up to 51 cM linked to the
target resistance gene after six backcross generations in
tomato. These studies indicate that linkage drag is likely to
be quite extensive and Klein et al. (2008) recently detailed
the extensive introgression of the donor haplotype flanking
the ma;/dw, genomic region on SBI-06 in sorghum,
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suggesting that genetic hitchhiking persists during direc-
tional selection.

The last 20 years has seen a wealth of information
produced on the location of quantitative trait loci (QTL) in
sorghum for a range of important traits such as plant height
(Lin et al. 1995; Pereira and Lee, 1995; Brown et al. 2008),
maturity (Crasta et al. 1999; Chantereau et al. 2001; Hart
et al. 2001; Feltus et al. 2006), stay-green drought tolerance
(Tuinstra et al. 1996; Crasta et al. 1999; Subudhi et al.
2000; Tao et al. 2000; Xu et al. 2000; Kebede et al. 2001;
Hausmann et al. 2002; Harris et al. 2007), fertility resto-
ration (Klein et al. 2001a; Jordan et al. 2010), aluminium
tolerance (Magalhaes et al. 2004) and insect resistance
(Tao et al. 2003). Integrating all available previously
mapped major effect genes onto a complete genome map
would supply sorghum breeders with a number of advan-
tages. In particular, as our knowledge of the location of
QTL controlling important traits increases it becomes
possible for breeders to be aware of the consequences of
selection for major effect genes. This information could be
used to enhance genetic gain by managing unfavourable
linkages or to exploit favourable linkages. In this paper, we
locate many of the major effect genes selected or com-
monly observed in segregating populations by sorghum
breeders to a recently published consensus map (Mace
et al. 2009) which is anchored to the sorghum genome
sequence. We also provide examples of the impact of
selection for major effect genes on quantitative traits in
sorghum.

Materials and methods
Major effect genes mapped

In total, 35 major effect genes were integrated into the
sorghum DATrT consensus map (Table 1). Where possible,
these genes have been associated with the classical genes
and the gene symbols originally described (Doggett 1970).
The 35 genes consisted of two genes relating to seedling
traits controlling coleoptile colour Rs; and Rs,; four genes
relating to leaf traits (bmrs, bmr;,, Lg and Trif); one gene
relating to leaf sheath traits (bm); one gene relating to plant
colour (P or Q); five genes relating to stem traits (7b;, d,
dw,, dws and Sb.Ht9.1); four genes relating to maturity
(Ma;, Maz;, Ma, and Mas); one gene relating to glume traits
(gc); one gene relating to awn traits (A); three genes
relating to male fertility (ms; Rf; and Rf>); six genes
relating to grain traits (By, I, R, Sh;, Y and Z); one gene
relating to endosperm traits (wx); four genes relating to
disease resistance traits (Pl,, Pu, rlf and Shs;); one gene
relating to resistances to insecticide (opr) and one gene
relating to abiotic stress tolerance (Altsp).
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Table 2 Comparison of genetic linkage mapping studies used to map the targeted major effect genes

Reference Pedigree of mapping Cross type Population Population # Loci # Linkage Total map
population type size mapped groups length (cM)
Boivin et al. (1999) 1S2807/379 Cultivated/cultivated RI 110 298 11 1,352
Boivin et al. (1999) 1S2807/249 Cultivated/cultivated RI 91 131 12 849
Burow et al. (2009) KSF2021/BTx623 Mutant/elite F, 120 30 1 118
Dufour et al. (1997) 1S2807/379 Cultivated/cultivated RI 110 155 13 977
Dufour et al. (1997) 1S2807/249 Cultivated/cultivated RI 91 129 12 878
Hart et al. (2001) BTx623/1S3620C Cultivated/cultivated RI 137 145 10 1,278.8
Jordan et al. (2010) R939145-2-2/1S8525 Cultivated/cultivated RI 146 596 10 1,431.6
Jordan et al. (2010) B923296/SC170-6-8 Cultivated/cultivated RI 88 10 1 23.3
Klein et al. (2001b) RTx430/Sureno Cultivated/cultivated RI 125 130 10 970
Knoll et al. (2008) Shan Qui Red/SRN39 Cultivated/cultivated RI 153 132 14 2,128
Lin et al. (1995) S. bicolorlS. propinquum Cultivated/wild F, 370 78 11 935
Tao et al. (1998b) QL39/QL41 Cultivated/cultivated RI 160 166 21 1,400
Rami et al. (1998) 1S2807/379 Cultivated/cultivated RI 110 128 11 878
Rami et al. (1998) 1S2807/249 Cultivated/cultivated RI 90 151 11 977
Srinivas et al. (2009) 296B/1S18551 Cultivated/cultivated RI 168 152 15 1,098.7
Tao et al. (2000) QL39/QL41 Cultivated/cultivated RI 160 311 10 ~2,750
Tao et al. (1998a) QL39/QL41 Cultivated/cultivated RI 120 194 21 1,400
Xu et al. (2000) B35/Tx7000 Cultivated/cultivated RI 98 145 10 837
Mace et al. (2008) R939145-2-2/1S8525 Cultivated/cultivated RI 146 596 10 1,431.6
Mace and Jordan, unpublished R890562/ICSV745 Cultivated/cultivated RI 119 488 12 1,405.8
Mace and Jordan, unpublished B923296/SC170-6-8 Cultivated/cultivated RI 88 10 1 23.3
Parh (2005) R939145-2-2/1S8525 Cultivated/cultivated RI 146 286 15 1,599.1
Satish et al. (2009) 296B/1S18551 Cultivated/cultivated RI 168 162 16 1,143

Mapping methodology

The recently published high-density sorghum consensus
map (Mace et al. 2009), consisting of 2,029 unique loci
(1,190 DATrT loci and 839 other loci) spanning 1,603.5 cM
and with an average marker density of 1 marker/0.79 cM,
was used as the framework map. The consensus map then
served as a backbone onto which the genes, mapped across
studies with different base genetic linkage maps (as
detailed in Tables 1, 2), were either projected, in a
“neighbours” map approach as described by Cone et al.
(2002), or sequence-mapped using an in silico mapping
strategy analogous to e-PCR (Schuler 1998). The projec-
tion strategy involved identifying the two nearest flanking
bridge markers shared by the consensus map and by the
maps in the individual studies for each target gene, and
then calculating the coordinate of this locus relative to the
ratio of the intervals defined by the flanking bridge markers
on the two maps. For placing genes at group extremities,
projection was based on the relative genetic distance of
common markers nearest to the end of the linkage group
(LG) between the framework map and the base map in the
original mapping study. For instances with very limited
numbers of markers in common flanking the target gene,

the physical (bp) location of the markers flanking the target
loci on the original base genetic linkage map were deter-
mined via BLAST similarity search against the sorghum
WGS sequence, using either PCR primer sequences or
RFLP probe sequences and then aligned to the consensus
map. When the gene was mapped in more than one study,
the mapping information from the multiple papers was
used to determine a location range on the consensus map.
For sequence mapping, BLAST similarity (Altschul et al.
1990) between targeted genes and the sorghum WGS
sequence was conducted via Phytozome (http://www.
phytozome.net), requiring hits with E < le-10 based on
BLASTn.

Simulation

QuLine is an integrated genetic and breeding simulation
tool based on the QU-GENE platform (Podlich and Cooper
1998) which is capable of simulating most breeding
methodologies for developing inbred lines (Wang et al.
2001, 2004). For the purpose of this study, QuLine was
used to simulate a pedigree-based inbred line development
programme typical of methods used by many sorghum
breeders. A genetic region based on a ~ 100-cM region of
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Table 3 Genetic characteristics of the two parental genotypes in the
simulation study

Pericarp colour (R) Stg2 Stgl Awns (A)

Parent 1 aa (awned)

AA (awnless)

Rr (lemon-yellow)
Parent 2 RR (red)

Stay-green  Stay-green

Senescent  Senescent

chromosome SBI-03 was simulated using gene locations
identified by the mapping methodology previously descri-
bed. The genetic region included the locations of two
mapped genes, awns (A) and pericarp colour (R) (Table 1)
and two of the major effect QTL for the stay-green drought
resistance trait, stgl and stg2 (Crasta et al. 1999; Xu et al.
2000; Subudhi et al. 2000; Harris et al. 2007), explaining
~20 and ~30% of the phenotypic variability, respec-
tively. Hypothetical molecular markers were located across
this region at 1-cM intervals.

To illustrate the impact of strong selection for the two
genes on the surrounding genome, we simulated five
hypothetical selection strategies for crosses between two
inbred parent lines, parent 1 and parent 2. Parent 1 had the
recessive alleles for the morphological genes awns (A) and
pericarp colour (R) (Table 3) and the favourable alleles for
the two stay-green QTL. This is the same genetic makeup
as the line BTx642 (also known as B35) which is the
source of the favourable allele of stgl and stg2 in a number
of QTL studies (Crasta et al. 1999; Xu et al. 2000; Subudhi
et al. 2000; Harris et al. 2007). Parent 2 was awn-less and
had a red pericarp (i.e. homozygous dominant for both
genes) and had the unfavourable alleles for the stay-green
QTLs. For these characteristics, parent 2 is typical of many
of the inbred lines used in the developed world as hybrid
parents.

Five selection scenarios are described in Table 4. In
each of the five selection scenarios, a large F, population
was produced by crossing the two inbred parents. The size
of the population was such that it was possible to select at
least 1,000 individual F2 plants (F,.; families) that met the
phenotypic selection criteria in Table 4. A typical sorghum

plant produces 500-1,000 seeds per plant and a typical
single row nursery plot contains 30 plants. It was assumed
that 30 plants from each of the 1,000 F,.; families were
grown as single row nursery plot. A single plant from each
row was selected that met the selection criteria and was
used as the seed source for the next generation (i.e. F.4)
again of 30 plants. This selection procedure was continued
until F,.5 where the genetic makeup of a single represen-
tative individual of each the 1,000 F,.5 families was
investigated. The F,.s stage is typically the generation
when evaluation for yield and other quantitative traits, such
as stay-green and grain yield, commences (either as F,.s
inbred lines or F,.5 testcross hybrids). For each scenario,
frequency of genes, marker and QTL alleles were plotted
against the map location at 1-cM intervals. A similar plot
was produced for the number of recombination events in a
10-cM window and for frequency of heterozygous loci at
each 1-cM interval. The frequencies of genotypes with
different combinations of the alleles of the two stay-green
QTL were also calculated for each scenario.

Results

In total, 35 genes were placed on the recently published
sorghum consensus map; 26 using the projection strategy, 8
using a sequence mapping strategy, and 1 using a combined
projection/sequence mapping strategy. These genes and
their locations are detailed in Fig. 1, Table 1 and ESM.
Four of the targeted genes were located on SBI-01.
A major gene controlling tillering, 7b; (Teosinte
Branchedl1), was originally cloned in maize (Doebley et al.
1997) and was found to suppress bud outgrowth. The
orthologous genes in rice (Takeda et al. 2003), Arabidopsis
(Finlayson 2007) and sorghum (Kebrom et al. 2006) have
been identified. The sorghum orthologue, termed Sb7B! by
Kebrom et al. (2006), exists as a single copy in the sor-
ghum genome with 93.9% nucleotide identify with the
maize TB1 gene. Sequence mapping located 7b; in

Table 4 Five different

. . . Scenario Selection pressure Phenotype selected
selection strategies adopted in
the simulation study No selection Random
2 Selection for the dominant phenotype (RR and Rr) Red grain
of the pericarp colour gene (R)
3 Selection for the recessive phenotype (rr) of the White grain
pericarp colour gene (R)
4 Selection for the dominant phenotype (RR and Rr) Red grain and awnless
of the pericarp colour gene (R) and the dominant
phenotype (AA or Aa) of the awns gene (A)
5 Selection for the recessive phenotype (rr) of the White grain and awned

pericarp colour gene (R) and the recessive
phenotype (aa) of the awns gene (A)

@ Springer
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Fig. 1 Schematic view of the sorghum consensus map. The 2,049
loci of the consensus map are displayed schematically by horizontal
lines across the bars representing the ten chromosomes. The left-most
bar indicates the length of each chromosome in cM. The grey shaded
regions on each chromosome represent the heterochromatin. The map

sorghum from 9,506,057 to 9,507,199 bp, corresponding
to gene Sb01g010690 with the annotation “similar to
Teosinte branchedl” (Phytozome Sbil.4 gene set). This
corresponds to a genetic linkage map location of 25.2 cM,
closely linked to the flanking SSR markers txp302 and
txp482. This location also corresponds to major effect til-
lering QTL identified in three studies (Paterson et al.
1995a; Hart et al. 2001; Feltus et al. 2006). The grain
shattering gene (Sh;) was originally located using QTL
mapping by Paterson et al. (19954, b) in an F, generation of
a S. bicolor x S. propinquum cross. Paterson et al. (1995b)
mapped Sh; between the flanking RFLP markers pSB766
and pSB195. Wise et al. (2002) subsequently fine-mapped
the locus between the flanking markers umcl40a and
umc27; both of these RFLP markers are present on the
consensus map and were used in a projection strategy to
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locations of the 35 targeted major effect genes are included in italics;
the degree of confidence of the location is indicated by the suffix; no
asterisk equates to a precise location, * equates to less than a 5 cM
location range, ** equates to between 5 and 10 cM location range and
*** equates to greater than a 10 cM location range

determine the location range of Sh; on the consensus map
(30.2-33.7 cM), closely linked to the SSR marker
sbAGFOS8. The gene controlling grain colour has been
mapped in three studies. Knoll et al. (2008) mapped a gene
for pericarp colour (red/white) on a recombinant inbred
(RI) population of a cross between Shan Qui Red and
SRN39. The pericarp locus was weakly linked to the SSR
marker txp32 (36-cM interval) and the RAPD marker
OPK18 (30 cM). However, Mace and Jordan (unpublished)
also mapped a gene controlling grain colour (red/white) in
two independent populations (R890562 x ICSV745;
B923296 x SC170-6-8), mapping to a concordant location
of between 121.9 and 128.8 cM on the consensus map,
closely linked to the flanking SSR marker txp279. Due to
the weak linkage in the genetic map described by Knoll
et al. (2008), the location determined by Mace and Jordan
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(unpublished) has been presented here. We postulate that
this gene corresponds to the classical gene Y, which
interacts with the second epicarp colour gene, R, to produce
a red (RRYY), yellow (1rrYY), or colourless or white
(RRyy or rryy) pericarp (Rooney 2000). A putative can-
didate gene for Y, Sb01g037670, was identified that is
orthologous to the maize pl gene (pericarp colour),
described by Sidorenko and Chandler (2008). The gene
magz, one of the six known classical genes that control
maturity in sorghum, maps to the distal end of the long arm
of SBI-01. Childs et al. (1997) determined that the ma3R
mutation of this gene causes a phenotype similar to plants
known to lack phytochrome B and concluded that the maj;
locus is a PHYB gene that encodes a 123-kD phytochrome.
Sequence mapping of the PHYB gene located the maj;
locus at between 60,910,479 and 60,917,763 bp, corre-
sponding to gene Sb01g037340. This corresponds to a
genetic linkage map location of between 115.5 and
125.7 cM, closely linked to the flanking SSR markers
txp229 and txp279.

Four of the targeted genes were located on SBI-02, all
using the projection strategy. The fertility restorer gene,
Rf,, was recently mapped by Jordan et al. (2010) in two RI
populations of the crosses R931945-2-2 x IS 8525 and
B923296 x SC170-6-8, flanked by the SSR markers txp50
and txp304; these SSRs were used to determine that the
location range of Rf2 on the consensus map was between
20.5 and 24.1 cM. The gene B,, which controls the pres-
ence of testa in the grain in the presence of B, was mapped
in RI populations of the crosses IS 2807 x 379 and IS
2807 x 249 by Dufour et al. (1997) and subsequently by
Rami et al. (1998), both studies calling this locus B;. Both
studies mapped the gene to the distal end of the long arm of
SBI-02, and the location range of B, on the consensus map
was determined to be between 32.3 and 36 cM, closely
linked to the SSR marker txp304. The gene for mesocarp
thickness (Z), also referred to as the pearly trait, was ini-
tially mapped by Tao et al. (1998a), and further refined in
Tao et al. (2000), on an RI population of the cross
QL39 x QL41 and found to be adjacent to the SSR marker
txpl3. Based on the RFLP map generated by Boivin et al.
(1999), Z mapped between umc88 and umc22. Its location
on the consensus map was determined to be between 89.9
and 104.4 cM, closely linked to the SSR markers txp298
and SbAGABO3. The fourth gene mapped to SBI-02 is the
maturity locus, mas, which, when present in the dominant
form together with mag, very strongly inhibits floral initi-
ation regardless of day length (Chantereau et al. 2001; Kim
2003). The physical location of molecular markers flanking
mas was determined by Kim (2003) by applying fluores-
cence in situ hybridisation (FISH) together with genetic
linkage mapping, and found mas to map between the AFLP
txa3424 and the SSR txpl00. Using the genetic linkage
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map generated for BTx623 x IS 3620C by Menz et al.
(2002) which includes AFLPs, RFLPs and SSRs, as a
bridging map, the location of mas on the consensus map
was determined to be between 152.5 and 166 cM, closely
linked to the SSR markers txp429 and txp431.

SBI-03 contained five of the targeted genes, four map-
ped onto SBI-03 using a projection strategy and one via
sequence mapping. A downy mildew resistance gene con-
ferring resistance to pathotype 1 of Peronosclerospora
sorghi was identified by Gowda et al. (1995) in the F,
population of the cross BTx623 x 1S3620C, between the
RFLP markers txs1053 and txs1092, and subsequently
placed on a sorghum framework map by Bennetzen et al.
(2001). The projection strategy determined the location
range of this locus, which we postulate could be P/, to be
between 24.6 and 38.4 cM, closely linked to the SSR
markers txp451, txp452, txp215 and txp488. The gene
controlling the red pericarp colour was mapped by Xu et al.
(2000) and identified as R on an RI population of the cross
B35 x RTx7000 and was found to map between the RFLP
markers txs584 and wg889. Both RFLP markers are pres-
ent on the consensus map and were used in a projection
strategy to determine the location range of R on the con-
sensus map of 87.9 cM, flanked by the RFLP marker
umc63 and the SSR marker txp120. The major gene con-
ferring aluminium tolerance in sorghum, Altspz was recently
mapped and cloned by Magalhaes et al. (2004, 2007).
Using a sequence mapping strategy, the Altsp gene was
determined to be Sb03g43890, located at 71,142,280—
71,144,686 bp, which is equivalent to 152 cM on the
consensus map, co-locating with the DArT markers
M188347, M342305, M342567 and M188920. The male
sterility gene, ms;, conferring non-functional pollen was
mapped by Jordan (unpublished) on an ms; introgression
population based on the line R931945-2-2 and found to be
adjacent to the SSR txp427. The projected location of ms;
on the consensus map was determined to be 155.3 cM,
between the RFLP marker txs1075 and the DArT marker
sPb-6770. The gene determining the presence or absence of
awns (A) was mapped independently by three groups
(Boivin et al. 1999; Tao et al. 2000; Hart et al. 2001) and
subsequently included on Bennetzen’s (2001) framework
map. Using a projection strategy, A was determined to be
located between 157.9 and 161.6 cM on the consensus
map, closely linked to the SSR markers txp427, txp69 and
txp425.

SBI-04 only contains one of the targeted genes, bmrg.
The brown midrib (bmr) mutants of sorghum have brown
vascular tissue in the leaves and stem as a result of changes
in lignin composition. Bmrg, resulting in altered lignin
composition, affects cinnamyl alcohol dehydrogenase
(CAD) activity (Saballos et al. 2009). Using a sequence
mapping strategy, the bmrs gene was determined to be
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Sb04g005950, located at 5,776,540-5,780,582 bp, which is
equivalent to between 25.1 and 44.2 cM on the consensus
map, linked to the SSR marker gpsb050.

SBI-05 also contains only one of the genes targeted, opr,
which confers resistance to organophosphate insectide. The
gene opr was mapped by Tao et al. (1998a; 2000) flanked
by RFLP markers txs713 and isul40, and by Xu et al.
(2000) as rcb (chemical burning resistance). Using a pro-
jection strategy, opr was determined to have a location
range on the consensus map of between 61.7 and
63.15 cM, closely linked to the RFLP marker isul20.

SBI-06 contains the highest number of the targeted
genes; seven, in total, all of which were mapped using the
projection strategy. Two genes, closely linked, controlling
maturity (Ma;) and height (dw,) were originally mapped by
Lin et al. 1995, and subsequently placed on the
BTx623 x IS3620C map of Menz et al. (2002) by Klein
et al. (2008). Ma;, which has the largest impact on flow-
ering date of all the maturity genes, was determined to be
flanked by the AFLP marker txa4001 and the indel marker
txi20 by Klein et al. (2008), and RFLP markers pSB0189
and pSB0580 by Lin et al. (1995). The projected location
on the consensus map was determined to be between 42.1
and 43.7 cM based on Klein et al. (2008), but based on the
mapping information of Lin et al. (1995), the projected
location was determined to be between 48 and 54 cM.
Consequently, the projected location of Ma; on the con-
sensus map was widened to between 42.1 and 54 cM,
closely linked to the SSR markers gap7 and gap72. dw,
was mapped adjacent to Ma; by Klein et al. (2008) and also
by Lin et al. (1995). In contrast to Ma;, the projected
location of dw, was in agreement between Klein et al.
(2008) and Lin et al. (1995) and was determined to be
between 43.6 and 48 cM, closely linked to the DArT
markers sPb-7169 and sPb-1395. The gene conferring seed
glume cover (gc) was mapped by Srinivas et al. (2009) in
an RI population of the cross 296B x IS 18551 to the
distal end of their SBI-06b adjacent to the gene conferring
stem mid-rib type (pithy: juicy or d), which they refer to as
Mrco. Using a projection strategy, the gc locus mapped to
between 78.5 and 82.2 cM on the consensus map, closely
linked to the DArT markers sPb-2463 and sPb-1543. The d
locus has also been mapped by Xu et al. (2000), to between
RFLP markers umc34 and txs1030, and Hart et al. (2001),
co-locating with the SSR txp97. Using a projection strat-
egy, d was determined to map between 84.2 and 93.2 cM,
closely linked to the SSR marker txp145. A gene confer-
ring seedling colour was mapped to SBI-06 by three
independent groups. Xu et al. 2000 identified the gene as
Rs (red coleoptile) and mapped it between umc44 and
txs1139. Subsequently, Knoll et al. (2008) remapped it as
seedling plant colour (red/green) between txp95 and
txp145. Mace et al. (2008) also mapped the same gene as

CC (coleoptile colour) in the R931945-2-2 x IS 8525
population, which was included as a component map in the
development of the sorghum consensus map. The projected
map location of this gene, renamed as Rs;, was determined
to be between 108.1 and 109.5 cM, closely linked to the
DArT marker sPb-5802. The Lg (liguleless) locus is the
sixth gene mapped to SBI-06, as determined by Bennetzen
et al. (2001), drawing on the classical genetic studies of
Webster (1965) who mapped Lg approximately 7 cM from
P and 20 cM from Rs. On the consensus map, Lg was
determined to map between 134.8 and 136.9 cM, closely
linked to the SSR marker txpl76. The gene determining
adult plant colour (P or Q) was mapped initially by Rami
et al. (1998) as P, flanked by two RFLP markers umc53
and umc5. Klein et al. (2001b) then mapped this gene as
plcolour wusing an RI population of the cross
RTx430 x Sureno flanked by the SSR txp57 and the AFLP
marker txal0077. Srinivas et al. (2009) mapped this gene
as Plcor flanked by SSRs txp57 and txpl7. Bennetzen et al.
(2001) included P on the sorghum framework map flanked
by txp57 and isul47. Based on details of the plant colour
segregating in Klein et al. (2001b) and Srinivas et al.
(2009), purple (P_Q_ )/tan (ppqq), it is not possible to
determine whether the gene is P or O, and we have
therefore called it P or Q. Using a projection strategy, the
location range of P or Q on the consensus map was
determined to be between 144.2 and 146.5 cM, closely
linked to the RFLP marker isu47.

Three of the targeted genes mapped to SBI-07. The
intensifier gene, I, controlling the intensity of the pericarp
colour, was mapped by Tao et al. (2000) adjacent to the
RFLP marker isu38. Using a projection strategy, I was
determined to map between 91.1 and 103.3 cM, closely
linked to the SSR marker msbcir300. The other two genes on
SBI-07, bmr;, and dw;, were mapped via sequence map-
ping. The new bmr allelic group nomenclature proposed by
Saballos et al. (2008) has been followed, which adopts the
most widely recognised allele for each allelic group as the
reference allele for the group. The bmr;, allelic group con-
tains six known alleles (bmrl2-ref, bmrl2-7, bmrl2-15,
bmr12-18, bmr12-25 and bmr12-26). Bout and Vermerris
(2003) determined that bmr12-ref, bmr12-18 and bmr12-26
are all allelic mutants of the gene encoding the lignin bio-
synthetic enzyme caffeic acid O-methyltransferase
(COMT). Using a sequence mapping strategy, the bmr;,
gene was determined to be Sb07g003860, located at
4,756,272-4,759,637 bp, which is equivalent to 58 cM on
the consensus map, and co-locates with the SSR marker
txp312 and the DArT marker sPb-6942. The major height
gene, dw;, was cloned and sequenced by Multani et al.
(2003). Using a sequence mapping strategy, the dw; gene
was determined to be Sb07g023730, located at 58,610,896—
58,618,660 bp, which is equivalent to 105 cM on the
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consensus map, and is flanked by the co-locating SSR
msbcir300 and DArT marker M340509 and the RFLP
marker SSCIRS57.

SBI-08 also contains three of the targeted genes.
A major gene for rust resistance was identified by Mclntyre
et al. (2004) as homologous to the maize Rpl-D rust
resistance gene in addition to co-locating with a major rust
resistance QTL with a LOD of 9.41 explaining 42.6% of
the phenotypic variation (Tao et al. 1998b). In addition to
using a projection strategy to determine the location of the
rust resistance gene, which we postulate could be Pu, on
the consensus map based on the flanking RFLP markers
psb47 and txs422, a sequence mapping strategy was also
used based on the Rp1-SO sequence information detailed
by Mclntyre et al. (2004). The location of Pu was deter-
mined to be between 28.7 and 30.8 cM, closely linked to
the RFLP marker RG8167 and the DArT marker sPb-5054.
There is a cluster of six putative rust resistance gene
candidates in this genomic region (Sb08g002340,
Sb08g002345, Sb08g002350, Sb08g002380, Sb082002390
and Sb082002410) from 2,487,742-2,514,226 bp. The
consensus map location of a major gene for fertility res-
toration, Rf;, was determined through sequence mapping
based on Klein et al. (2005), building on their initial work
in mapping Rf; based on the F, population of the cross
ATx623 x RTx432 (Klein et al. 2001a). On the consensus
map, Rf; co-located with the RFLP marker txs560 at
88.5 cM and is flanked by the SSR marker txp250. A sec-
ond resistance gene to head smut (Shs;) was also mapped
to SBI-08, as detailed in Bennetzen et al. (2001), and based
on a projection strategy using the flanking RFLP markers
txs1220 and txs1294, the location range of Shs; on the
consensus map was determined to be between 89.7 and
106.8 cM, closely linked to the SSR markers txp105 and
gpsb123.

SBI-09 contains only one of the targeted genes, Sb.Ht9.1,
controlling height. Major effect QTL for height co-locate in
this region, as identified by Lin et al. (1995), Pereira and Lee
(1995) and Brown et al. (2008). Using an association map-
ping approach, Brown et al. (2008) fine-mapped the likely
interval for major effect QTL, which they termed Sb-HT9.1,
to approximately 100 kb, with the most highly significant
marker located at 57.21 Mb. This corresponds to a genetic
linkage map location on the consensus map of between
146.6 and 150.5 cM, and is closely linked to the RFLP
marker txs307b. Based on knowledge of pleiotropic effects
of the Dw loci, Pereira and Lee (1995) attempted to corre-
spond the major effect QTL with the dw loci. Pleiotropic
effects were not observed for either dw; and dw,. Due to the
lack of co-locating QTL around the major effect height locus
on SBI-09, in contrast to dw; and dws, it is likely that locus
represents either dw; or dw,, most probably dw; (Brown,
pers. comm.).

@ Springer

SBI-10 contains five of the targeted genes. The first
locus, bm, confers the production of profuse amounts of
epicuticular wax or bloom. Burow et al. (2009) mapped this
locus, which they termed blmc, using an F, population of
the cross BTx623 x KFS2021 and delimited bm to a
0.7-cM region. The locus was flanked by newly identified
SSRs, which were sequence-mapped onto the consensus
map using the primer sequences. The location range of the
bm locus on the consensus map was determined to be
between 0 and 4.4 cM, closely linked with the SSRs,
detailed in Burow et al. (2009), Xsbarslbk10.48 and
Xsbarslbk10.57. The gene conferring the red leaf response
to plants infected with Johnson Grass Mosaic Virus, rif, was
mapped in the R931945-2-2 x IS 8525 population by Parh
2005 and Mace et al. (2008), as RL. This population was
included as a component map in the development of the
sorghum consensus map and consequently this gene was
projected onto the consensus map at 4.4 cM, closely linked
with five DArT markers (sPb-2041, sPb-5079, sPb-4129,
sPb-6833, sPb-0600) and one RFLP marker PSB305 (Mace
et al. 2009). The gene conferring waxy endosperm, wx,
encodes granule-bound ADP-glucose-gluosyl transferase
(Mclntyre et al. 2008). Using a sequence mapping strategy,
the wx gene was determined to be Sb10g002140, located at
1,827,074-1,831,279 bp, which is equivalent to 29.1 cM on
the consensus map, and is flanked by two co-locating SSR
markers msbcir331 and msbcir324 and a DArT marker
M189136. The maturity gene, ma,, has been reported to
map near to txs1163 in Hart et al. (2001), however, no
detailed genetic linkage mapping data has been reported in
the literature for this locus. The projected location of this
gene onto the consensus map was therefore based on the
location of the RFLP marker, txs1163, together with the
location of a closely linked major effect QTL for photo-
period sensitivity described by Chantereau et al. (2001).
The ma, gene was thus determined to be located between
22.2 and 39.1 cM, closely linked to both wx and Rs,. This
latter gene, conferring coleoptile colour, has been mapped
by Boivin et al. (1999) as Rs, flanked by RFLP markers
rz123 and umc113 and Tao et al. (2000) as SDCR (seedling
colour) between RFLP markers umc156 and psb107. Using
a projection strategy, Rs, was placed on the consensus map
between 32.1 and 35.3 cM closely linked to the SSR marker
gpsb027. Satish et al. (2009) mapped a gene controlling
trichome morphology, which they termed T7it, using the RI
population of the cross 296B x IS 18551, between their
new SSR markers Xnhsbm1044 and Xnhsbm1013. Using a
sequence mapping strategy, the physical location of these
new SSRs was identified and their corresponding location in
cM on the consensus map determined. Using a projection
strategy, the location of Trit on the consensus map was
determined to be 85.9 cM, adjacent to the RFLP marker
umc150.
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Fig. 2 Sections of SBI-03 with stay-green QTL compared across four previous publications and aligned to the consensus map, in addition to the

results from the simulation study

Simulation studies

To illustrate the impact of selection for major effect genes
on the surrounding genomic region, a 100-cM region on the
long arm of SBI-03 was selected containing the genes
controlling the morphological traits awns (A) and grain
colour (R) and two major effect QTL for stay-green (Crasta
et al. 1999; Xu et al. 2000; Subudhi et al. 2000; Harris et al.
2007). Figure 2 details the location of the QTL as deter-
mined in the original studies and the projected location on
the consensus map.

Five different selection strategies based on the genes A
and R were simulated using Qu-Line and allele frequency,
number of recombination events and heterozygosity cal-
culated (Fig. 2). Scenario 1 can be considered as a control
scenario with no selection on either major effect gene,
and the frequency of parental alleles across all loci in the
100-cM region is equal and constant. Similarly, both the
recombination and heterozygosity frequencies remain
constant across all loci.

For scenario 2, with selection for the dominant allele
of R, the frequency of the parent 2 allele remains higher
than in scenario 1 across all loci, and above 60% for the
60-cM region surrounding R. The heterozygosity and

recombination frequencies peak in the genomic region
containing R and remain higher than in scenario 1 across
over 90% of the 100-cM region.

For scenario 3, with selection for the recessive allele of
R, the frequency of the parent 2 allele is below 10% in a
20-cM window around R and remains lower for the parent
2 allele frequency compared to scenario 1 across all loci.
The heterozygosity and recombination frequencies drop in
the genomic region containing R and remain lower than in
scenario 1 across over 90% of the 100-cM region.

For scenario 4, with selection for the dominant alleles of
both R and A, the frequency of the parent 2 allele remains
above 67% across all loci in the 100-cM region. Both
heterozygosity and recombination frequencies remain high
across all loci; higher than 100% of loci with scenario 1
and higher than approximately 50% of loci with scenario 2.

For scenario 5, with selection for the recessive alleles of
both R and A, the frequency of the parent 2 allele is below
10% across 80% of all loci and both heterozygosity and
recombination frequencies remain low across all loci;
lower than 100% of loci with scenario 1 and lower than
approximately 90% of loci with scenario 3.

By selecting for the recessive alleles of both the A and R
loci (scenario 5), the frequency of recombinant individuals
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Table 5 Frequency of favourable (parent 2) alleles at two stay-green QTL loci (stg2 and stgl) across the five simulated selection scenarios

Scenario 2
Dominant R

Scenario 1
No selection

Scenario 3
Recessive R

Scenario 5
Recessive R and A

Scenario 4
Dominant R and A

Stg2 0.495
Stgl 0.499

0.199
0.424

0.975
0.688

0.164
0.306

0.984
0.906

between the stgl and stg2 QTL loci is reduced to 4.5%;
with selection for the recessive allele of R only (scenario
3), the frequency of recombinant individuals between the
stgl and stg2 remains low at 8.5%. In contrast, by selecting
for the dominant alleles of both A and R (scenario 4), the
frequency of recombinant individuals between the stgl and
stg2 QTL loci is 16.5%, compared to 13.5% with no
selection (scenario 1).

Table 5 details the frequency of the favourable stay-
green alleles at the peak location of the QTL for stgl and
stg2, across all five selection scenarios. The highest fre-
quencies of the stay-green alleles for both stay-green QTL
were produced with scenario 5, with over 90% of 1,000
simulated progeny containing the favourable stay-green
alleles at both QTL loci. Even with selection for the
recessive allele of only one gene (scenario 3), almost 70%
of 1,000 simulated progeny contained the favourable
(parent 1) stay-green alleles at both QTL loci. In contrast
with scenarios 2 and 4, selecting for the dominant allele of
R or both R and A, the frequency of individuals containing
the favourable (parent 1) stay-green alleles at both QTL
loci remains lower than with scenario 1 (no selection) and
falls to just under 20% for the stg2 loci with scenario 2.

Discussion

Thirty-five major effect genes commonly observed in
segregating sorghum populations have been successfully
placed on a single consensus map (Mace et al. 2009).
While these genes have been mapped in a range of studies,
until recently it has been difficult to integrate them into a
single map due to the lack of common markers across
populations. The recent sequencing of the sorghum genome
(Paterson et al. 2009) and the construction of dense
molecular marker maps (Bowers et al. 2003; Menz et al.
2002; Mace et al. 2009) has made this possible. Where
possible, these genes have been associated with the clas-
sical genes and their gene symbols, which had been iden-
tified prior to the development of molecular markers. In
many cases, the link between the classical gene and the
mapped gene is tenuous as the genotypes used in the
mapping studies vary from those used in the original
classical genetics study.
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The locations of 9 of the 35 genes were determined
through sequence mapping of cloned genes or tightly
linked markers; Th; (Kebrom et al. 2006), mas; (Childs
et al. 1997), Altgp (Magalhaes et al. 2007), bmrs (Saballos
et al. 2008), bmr;, (Bout and Vermerris 2003), dw;
(Multani et al. 2003), Pu (MclIntyre et al. 2004), Rf; (Klein
et al. 2005) and wx (Mclntyre et al. 2008). The determi-
nation of the equivalent genetic linkage map location in cM
from the physical location was dependent on the marker’s
location along the chromosome, whether it was located in a
heterochromatic or euchromatic region, in addition to the
density of sequenced markers on the consensus map. This
resulted in five genes (bmr,, Pu, wx, maz and bmrg) being
placed at an approximate position with a location range;
the latter two markers had a range greater than 10 cM. The
location of the other 26 genes was determined using a
projection strategy, based on markers in common between
the maps detailed in the original reference and the con-
sensus map. Two of the major effect genes mapped using
the projection strategy (Sh; and mas) were based on the
results of physical mapping (Wise et al. 2002; Kim 2003).
The projection of the remaining 24 genes was based on the
results of genetic linkage mapping (Tables 1, 2). The
determination of the projected locations on the consensus
map for these genes was dependent upon the parameters of
the original genetic linkage mapping studies; in particular
the population size, the morphological trait phenotyping
methodology, the density of the original genetic linkage
map and the number of markers in common with the
consensus map. The latter issue, however, is becoming
increasingly redundant with the availability of SSR primer
sequence information in addition to RFLP sequence
information, allowing previously excluded markers to be
sequence-mapped onto the consensus map. Of the 24 genes
projected onto the consensus map based on data from
original genetic linkage mapping studies, 11 were mapped
in more than one study. The projected locations based on
multiple studies mapped within a 5-cM region on the
consensus map for the majority of the genes. The projected
locations of three genes (Z, ma; and d) were less consistent,
based on multiple mapping studies, resulting in a location
range of 10 cM up to 14.5 cM. The maturity gene, may,
had the largest location range on the consensus map, due to
the lack of detailed genetic linkage mapping data.
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However, despite the lack of detailed information on the
precise location of may, its inclusion in this study was
considered important as this gene will likely be under
strong selection pressure when using tropical germplasm in
temperate environments or temperate germplasm in tropi-
cal environments. Hence, knowledge of its genomic loca-
tion provides breeders with critical information.

Many major effect genes, such as those controlling seed
colour (R, Y, B, and Z), plant height (dw;), lignin content
(bmrg and bmr;,) and endosperm type (wx), are important
targets for selection particularly in the early generations of
sorghum pedigree breeding programmes. Other genes such
as those controlling plant colour (P or Q) or awns (A) and
epicuticular wax (bm) are relatively neutral as far as
breeders are concerned and are often not subjected to
selection. Regardless of the inherent value of the traits that
they control, these genes can usually be scored quickly and
cheaply on a single plant basis in the early generations of
pedigree breeding programmes. The integration of these
genes into this map permits them to be used as easily
recognised landmarks for specific chromosomal segments
providing a bridge between conventional breeding and the
increasing volume of QTL data that is becoming available,
providing a unique opportunity to use the mapped major
effect genes as an easily recognised landmark for a specific
chromosomal segment, with opportunities for sorghum
breeders to be aware of both the dangers and opportunities
of early generation phenotypic selection for these traits.
The use of morphological markers for indirect selection
with associated traits is not new; for example Nagaraja
Reddy et al. (2008) recently reported that among the many
traits, brown and pithy leaf midrib, presence of awn, types
of glumes in the panicles and plant colour, have been found
to be useful as markers since they are often associated with
economically important traits such as increased fodder
quality (brown midrib) (Porter et al. 1978) and resistance to
bird damage (presence of awns; Kullaiswamy and Goud
1983). Closed glume type panicles have been observed to
confer an advantage over open type panicles in offering
resistance to grain mold infection (Murty 2000) and tan-
coloured plants are reported to exhibit immunity to various
fungal diseases (Melake-Berhan et al. 1996). Additionally,
a recent report on the effects of plant colour on agronomic
characters of sorghum showed lower grain yields from a
group of tan hybrids compared to pigmented hybrids
(Williams-Alanis et al. 1995). These associations are fre-
quently directly linked to the effects of the major gene, e.g.
the chromosomal segment containing the B, gene con-
trolling the presence of the high-tannin testa layer in the
sorghum grain has been associated with grain quality
(Rami et al. 1998) and it is possible that the high tannin
content in the sorghum contributes to grain mold resis-
tance. Similarly, the association between tan plant colour

and foliar disease resistance is suggestive of a relationship
between plant pigmentation and the hypersensitive
response in sorghum (Klein et al. 2001b). Such pleiotropic
effects of major genes have been observed in other crop
species too, e.g. Millar et al. (1999) determined that CUT1,
an Arabidopsis gene required for cuticular wax biosyn-
thesis, has a pleiotropic effect and results in conditional
male sterility, caused by the absence of waxes in the try-
pine layer of the pollen grain disrupting pollen—pistil
interactions. However, in addition to providing further
insights into pleiotropic effects, the placement of 35 major
effect genes onto a single consensus map, providing a
convenient framework to link QTL information across
historical studies, offers the opportunity to identify whether
a morphological marker is linked, either favourably or
unfavourably, to other agronomic traits of importance. To
illustrate this, we have detailed examples of additional
QTL linked to the major effect genes in Table 6 which
indicates the potential for unforeseen consequences, due to
linkage drag, of selection decisions based on major genes.
It is very likely that a proportion of linked QTL are due to
pleiotropic effects of the major gene, however, there are
other examples of QTL for independent traits linked to
major genes. It is beyond the scope of the current paper to
detail all the linked QTL; instead to illustrate the potential
risks and opportunities of selection for major effect genes,
a simulation study was conducted using a scenario based
on two genes that can be the target of early generation
selection. The two genes flank a region of ~ 100 cM of the
long arm of SBI-03. The simulated study revealed the
impact of five different selection strategies on allelic, het-
erozygosity and recombination frequencies across all loci
in the targeted region. When the recessive alleles of A and
R were under selection, either singly (scenario 3) or in
combination (scenario 5), recombination and heterozy-
gosity were limited across the entire region and the fre-
quency of favourable QTL alleles at both stgl and stg2
QTL loci was on average 80% higher than with no selec-
tion (scenario 1) or with selection for the dominant alleles
of the genes (scenarios 2 and 4). By selecting for progeny
with awns and lemon-yellow grain, breeders therefore
significantly increase the probability of selecting individ-
uals with both stgl and stg2 QTL. In contrast, when the
dominant alleles of A and R were under selection, recom-
bination and heterozygosity were increased across the
entire region and the frequency of favourable QTL alleles
at both stgl and stg2 was lower compared to the alternative
selection strategies.

One of the simulated parents (parent 1) has the same
genetic constitution as the line BTx642 (also known as
B35) which is the primary source of valuable alleles for
stgl and stg2 and has been used in the DEEDI sorghum
breeding programme to improve drought adaptation. Parent

@ Springer



1352

Theor Appl Genet (2010) 121:1339-1356

Table 6 Examples of QTL

linked to 17 major effect genes Gene QTL wrait Publication
Th,; Shoot fly resistance Satish et al. (2009)
Sh; Endosperm colour Salas Fernandez et al. (2008)
Mas Rhizome number Paterson et al. (1995b)
Y Grain mold resistance Rami et al. (1998)
Rf> Cold tolerance Knoll et al. (2008)
B, Grain mold resistance Rami et al. (1998)
B> Ergot resistance Parh et al. (2008)
VA Stay-green (stg3) Harris et al. (2007)
Mas Rust resistance Mclntyre et al. (2005), Tao et al. (1998b)
Pla Stay-green (stgA) Tao et al. (2000)
opr Stay-green (stg4) Harris et al. (2007)
gc Ergot resistance Parh et al. (2008)
d Shoot fly resistance Satish et al. (2009)
d Ergot resistance Parh et al. (2008)
Rs; Ergot resistance Parh et al. 2008)
P Grain mold resistance Klein et al. (2001b)
bmr;, Stay-green (stgE) Kebede et al. (2001)
1 Ergot resistance Parh et al. (2008)
Rs, Stay-green (stgl) Tao et al. (2000), Kebede et al. (2001)

2 is typical of the red-grained senescent germplasm widely
used in Australia and other developed countries. Conse-
quently in the late 1980s and 1990s, the DEEDI sorghum
breeding programme carried out early generation selection
for the dominant R allele (scenario 2), while conducting
late generation selection for the quantitative stay-green trait
using the BTx642 source, prior to the knowledge of the
association between stgl and stg2 and grain colour. The
consequence of the early generation selection for R was
that stg2 was entirely absent from elite breeding popula-
tions developed during this period (unpublished data). Key
lines with moderate levels of stay-green that emerged from
this initial cycle of selection all carried the favourable stgl
allele and the recessive A allele (unpublished data). Not
surprisingly, the frequency of individuals with high levels
of stay-green was low and none of the derived lines had
stay-green levels equivalent to BTx642. In the light of our
knowledge of the association between these major effect
genes and stgl and stg2 (that the favourable, dominant
allele of the R gene is linked in repulsion with the
favourable stgl and stg2 alleles), much more effective
strategies can be deployed. For example, a strategy that
involves selecting for red-grained individuals from families
that segregate for grain colour (heterozygous R) and that
also had awns (recessive A) would result in a very much
higher frequency of individuals carrying the favourable
stgl allele and a much improved chance of carrying the
favourable stg2 allele (i.e. a high frequency of recombinant
individuals. Alternatively, since commercial cultivars in
Australia are exclusively F; hybrids, and the preferred
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red-grain colour (R) is dominant, and the stay-green trait
partially dominant (Tao et al. 2000), an even more effec-
tive strategy of increasing the frequency of individuals
containing the favourable stg2 allele would be to select for
the lemon-yellow (recessive) allele of the R gene together
with awns, and ensure that the other parent of the F; hybrid
had red grain.

The D gene, controlling dry (dominant, unfavourable
allele) versus juicy (recessive, favourable allele) stems, is a
further example of a major effect gene used as a target of
selection in its own right that is also linked to a QTL. The
gene is characterised by a highly heritable white midrib
phenotype that can be easily selected on a single plant basis.
The D gene is located within the region of a sorghum ergot
resistance QTL, which was found to control 14% of the
variation in ergot resistance by Parh et al. (2008). Ergot
resistance is a quantitative trait with low to moderate heri-
tability on a single plant basis. Resistance to the disease is
valuable in dual purpose sorghum as the alkaloids produced
by the fungus have negative effects on cattle growth rates
and lactation and can even cause death (Blaney et al. 2000).
The source of resistance used in the study by Parh et al.
(2008), IS8525, is linked in repulsion with the favourable,
recessive allele of d and hence if this source of resistance is
used in a forage breeding programme, strong selection in
early generations for juicy stems would eliminate this QTL
from the resulting progeny. Assuming no pleiotropy, then a
more effective strategy may be to select for the dominant,
unfavourable allele of D (dry, pithy stems) for a number
of generations to maintain heterozygosity and enhance
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recombination, then identify juicy segregants from the later
generations.

Another favourable linkage identified in this study is that
between the aluminium tolerance gene (Altsp), the awn gene
(A) and the genetic male sterility gene ms;. Altgp is linked to
ms3 at 3 cM and to awns at 8 cM; the cluster of genes being
located on the end of the long arm of SBI-03 (Fig. 2).
Aluminium tolerance in a plant, conferred by Altsg, can
only be determined using a specific phenotypic screening
method or molecular markers. In contrast, both genetic male
sterility and the presence of awns can be readily scored on a
single plant basis. The genetic male sterility gene ms; is
widely used by sorghum breeders to facilitate crossing,
particularly in recurrent selection programmes (Doggett and
Eberhart 1968). The linkage between ms; and awns is
already used by some breeders to identify sterile plants prior
to flowering (Jordan DR unpublished data). If an Altgg
donor line is used to introgress aluminium tolerance into a
line with a contrasting allele for the awns gene, then
selection for the awn allele present in the Altgz donor would
greatly enrich the resulting progeny lines for Altgg. If ms; is
segregating in an elite line or population, then making use
of the linkage between ms; and Alfgp offers an attractive
scenario for very efficient single gene backcrossing without
the need for molecular markers or specific selection envi-
ronments for aluminium tolerance. A cross between the
Altsg donor and a sterile plant from a suitable recurrent
parent will result in an F; plant that can be back-crossed to
another sterile plant from the recurrent parent and so on
until the recurrent parent phenotype is recovered. At any
backcross F; generation, the progeny can be selfed and the
resulting BC,F, population selected for fertility. In the
absence of recombination between the Altgg and mss,
homozygous fertile lines will be homozygous for the
favourable allele of Altgz. The close linkage between the
genes is such that relatively few unique lineages would be
needed to ensure a plant carrying Altsg was obtained.

The recent development of a sorghum consensus genetic
linkage map and the inclusion of major effect genes on this
map, now makes it possible for sorghum researchers and
breeders to link information on the location of genes con-
trolling simple traits to QTL studies. This, in turn, provides
new opportunities for breeders to take advantage of readily
scorable major effect genes and to develop more effective
breeding strategies. These include indirect selection using
genes controlling simply-inherited morphological traits, and
using these genes to enrich populations for favourable alleles
or recombination events or mitigating the consequences of
unfavourable linkages. The concepts described in this paper
and the particular case studies illustrated have particular
application to breeding programmes in developing countries
where the application of molecular markers is expensive or
not possible.
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